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A generalized pseudopotential for hard-sphere interaction is obtained, which is valid for all angular-
momentum states. This pseudopotential is then used in the evaluation of both the ground-state energy 
and the excitation spectrum for a dilute Bose system of hard spheres. The calculated ground-state energy 
agrees with that obtained by other authors; the excitation spectrum obtained for liquid helium resembles the 
phonon-roton spectrum introduced by Landau. 

1. INTRODUCTION 

TH E problem of a quantum-mechanical system of 
many particles with hard-sphere interaction has 

been considered by many authors. In particular, Lee, 
Huang, and Yang1 used a pseudopotential method and 
obtained many interesting results on both the equi­
librium and nonequilibrium properties for the system 
under consideration. This method is based on the idea 
of replacing the hard-sphere boundary condition on the 
wave function by a pseudopotential to facilitate the 
perturbational calculation. The same idea was intro­
duced by Fermi2 in the scattering problem, but he 
limited the use of pseudopotential to the Born approxi­
mation. Huang and Yang3 generalized the Fermi 
pseudopotential to include all the partial waves, but 
the form of their generalized pseudopotential is rather 
complicated. For this reason the calculation in LHY 
is still based on the S-wave Fermi pseudopotential. 
Henceforth many people4"6 have made attempts to 
modify the Fermi pseudopotential for the purpose of 
simplifying the many-body calculations or to introduce 
some new pseudopotential with broader range of 
validity. 

We report in this paper a new form of pseudopotential 
which is simple in form and gives, in general, exact 
results for two-body scattering problems or for many-
body problems with the assumption of binary inter­
action. I t is also, in our opinion, easier to handle than 
the pseudopotentials mentioned above. The derivation 
of this generalized pseudopotential forms the main body 
of Sec. 2. The other conclusion reached in Sec. 2 is 
that any well-behaved potential consisting of a hard­
core part can be treated as the sum of a potential 
defined outside the core region and our generalized 
pseudopotential. 

In Sec. 3 our generalized pseudopotential is applied 
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to a system of many particles. We make use of the 
second quantization formalism and write down the 
hard-sphere Hamiltonian, which is independent of 
statistics. We then confine ourselves to a dilute Bose 
system in Sec. 4 and obtain its ground state energy, 
which agrees with that obtained by other authors. The 
excitation spectrum is discussed in Sec. 5. The inter­
esting result is that if we stretch the validity of the 
present calculation and apply the result to liquid 
helium, we can produce the phonon-roton spectrum 
introduced phenomenologically by Landau7 to explain 
the low-temperature properties of liquid helium I I . 

2. PSEUDOPOTENTIAL FOR HARD-SPHERE 
INTERACTION 

For two particles with hard-sphere interaction, the 
wave function can be written, in general, as 

Uiir) 

1,171 y 

and the function Ui(r) satisfies the Schrodinger equation 

fi2 d2Ui{r) ( l(l+l)fi2\ 

\ 2ar2 J 
tfi(r) = 0, (2.1a) 

2\x dr2 \ 2\xr2 

with the boundary condition 

tfi(r) = 0 , r^o, (2.1b) 

where a is the diameter of the hard sphere. The slope 
dUi(r)/dr suffers a discontinuity at r=a. I t is well 
known that such effect can be produced by including a 
5-function term in the second-order differential equa­
tion. In general the following homogeneous differential 
equation reproduces the solution in (2.1): 

ft2 dhn(r) / l(l+l)fi\ 
+ [E )ui(r) 

2/x dr2 llir2 

h2 dui(r+e) 
= l im— 8(r-a) , (2.2) 

*~*° 2/z dr 

where e is a positive infinitesimal quantity. With the 
boundary condition ^ ( 0 ) = 0, the general solution of 
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(2.2) is 

Ui(r) = BJsrji(kr), r<a (2.3) 

ui(r) = Bikrji(kr)+Cikr[ni(ka)ji(kr) 

-ji(ka)m(kr)], r>a (2.4) 

where ji and n\ are the spherical Bessel and spherical 
Neumann functions, respectively, and ¥k2/2fjL=E. If 
we integrate both sides of (2.2) form a— e to a+e we 
obtain 

dui(r)/dr\r~a^e = 0. (2.5) 

From (2.3) and (2.5) we conclude that 

m(r) = 0 for r^a, (2.6) 

except when k satisfies the following equation 

kajt'ikaj+jtka)^. (2.7) 

Equation (2.6) together with (2.4) gives exactly the 
solution of (2.1). From (2.2) we can write down the 
equation for the wave function \p(x) as 

¥ ¥ (b \ 
—V^(r)+£^(r)-lim 8(r-a)[—r^(r)) . (2.8) 
2fx e~>0 2/jia \dr I r==a+£ 

Therefore, for two-body scattering problems, the 
following pseudopotential can be used as an exact 
replacement for the hard-sphere boundary condition : 

VpB=—6(r-a)[-r , (2.9) 

so long as the energy of scattering does not satisfy (2.7). 
U We shall use the pseudopotential F p s in the many-
body calculation in the next section. In view of the 
fact that there is this discrete set of energies for which 
F p s does not exactly replace the hard-sphere potential, 
we have to examine its effect on the calculated results. 
Our unperturbed many-body system is a collection of 
free particles, which have a continuous energy spectrum 
in the limit of infinite volume. So long as the discrete 
set does not cause any singularities in the perturbational 
calculation, we argue that it should have no effect on 
the calculation. As far as the present calculation is 
concerned, it can be seen from later sections that no 
such singularities occur. In a formal way this defect 
of F p s can be corrected for by associating with it a 
projection operator, which selects out this particular 
set of states and replaces them by the exact hard-sphere 
solutions. A type of projection operator, which would 
project out the hard-sphere solution, has been proposed 
by Siegert.8 But, in our opinion, such a formal mathe­
matical scheme would not improve the present calcu­
lation for a dilute Bose system. 

I t is easy to see that an additional potential term in 
Eq. (2.2) would not change the form of the pseudo-
potential, so long as the added potential is nonsingular 

8 A. J. F. Siegert, Phys. Rev. 116, 1057 (1959). 

in the region r^a. Huang9 in his treatment of a Van 
der Waal type potential breaks it into a pseudopotential 
part and an attractive part. Our present treatment 
gives the justification for this type of procedure. 

3. MANY-BODY SYSTEM 

W ê make use of the pseudopotential derived in last 
section to construct a many-body Hamiltonian with 
hard-sphere interaction between pair of particles. As 
in LHY we make an assumption of interaction through 
pairwise-pseudopotentials, namely, we take as the 
interaction term the following 

W / d \ 
H' = \im — ZS(rtj~a)[ riS . (3.1) 

e^°2mai>J \dfij / rij^a+t 

The validity of this approximation has been thoroughly 
discussed by Huang and Yang.3 In addition, Wu4 has 
proved that there should be no three-body pseudo-
potential. I t is also doubtful that up to the order of 
accuracy of the present calculation, the higher body 
pseudopotentials would change any of our results 
obtained by using (3.1). 

We recast (3.1) in the language of quantized fields, 
and with periodic boundary condition applied to a box 
of volume 12, write down the many-body Hamiltonian 

fi2 r fi2 r 
H= / fef (x)V2tKx)+lim / d*x&%' 

2m J e~*° 2ma J 

Xife*(x)i|[*(x')5(r-fl)f-rilr(x0ffe(x)) , (3.2) 

where t|r* and ^ are the usual field operators for free 
particles and r=\x—x'|. The difference between 
periodic and rigid box boundary conditions has been 
discussed for hard-sphere interaction by Eyges.10 

We use the annihilation operator ah defined by 

1 
4(x) = E < ^ k - X , (3.3) 

\/Q k 

and write H in momentum space: 

fi2 2irafi2 

H=-—• £ fc20k*ak+lim ]T 5p+q_s_ t i0ap*aq*asat 
2m k e ^ ° mQ, p,q,s,t 
(sinOa a + e Q • (t— s) /cosQa sin()a\ } 

X + - , (3.4) 
[ Qa 2 Q \ Qa (Qa)2/ J 

where 
Q = - i { ( p - q ) - ( t - s ) ( l + € / a ) } . 

I t is to be noticed that the factor e in the definition of 
Q is indispensable in getting the correct results. The 
Hamiltonian (3.4) is independent of statistics. 

9 K. Huang, Phys. Rev. 119, 1129 (1960). 
10 L. Eyges, Ann. Phys. (N. Y.) 2, 101 (1957). 
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4. GROUND-STATE ENERGY FOR A 
DILUTE BOSE SYSTEM 

We first try to find the energy eigenvalues of the 
pairwise part of the Hamiltonian, Hp, by following 

We apply (3.4) specifically to a dilute Bose system Wu's method.4 For the reason of completeness we have 
consisting of N particles. We adopt Bogoliubov's11 t o r e P e a t P a r t o f h i s treatment here. We make a 
approximation in replacing the creation and annihilation Bogoliubov transformation of the form 
operators for zero momentum particles, #o* and ao, by 
a c number, (No)112, where No is the occupation number 
for the zero-momentum state. In this approximation, 
the Hamiltonian H in (3.4) can be rewritten as 

H=HP+Ht+Hr, (4.1) 

HP =—J47rapiV[l+(l-£)2] 

+ l i m Z [ (&+ko*Kk))o**a*-

^ k = ( l ~ a k 2 ) - 1 / 2 ( ^ k + « ^ - k * ) ) 

6_k= ( l - a k V / 2 ( a -k+« i r f f c* ) . 

If «k is chosen to be 

sinka\ - 1 

(4.6) 

« k 

/ smka\~ 

ko2 sinka 
a 

2 ka 
X • 0 - 4y*2-

sinka cos^(a+e)\ 1/2"l 

J ' 
k0

2 

_| cos£(a+e)ak#-k 
2 

e_>0 mil P,q,p+q^0 

where 

+ g-(p,q)^p+q*^P^q} : 
2iran2 

Hr = \im Z 5p+q_s_tfoap*aq*asat 
e"^° mil P.q.s.t^O 

isinQa a + e Q ' ( t - s ) 

(4.2) 

(4.3) 

y*=W(*H-JW))_1, 

(4.7) 

(4.8) 

the Hamiltonian Hp can be written as 

ff,=£o+limE£«(*)*k*ftk 
e->0 k^O 

^2 / sin&a \ 
+ l i m — Z h2[ cosk(a+e) \l 

6~*° 2m k^o V &a 
(4.9) 

where 

X 
Qa 

X 

2 g 

(cos()a sin()a\ 1 

Qa (Qa)2) I ' 

ft2 A2 

£ 0 = = — 4 x a p i V [ l - ( l - Q 2 ] + l i m — L (k2+k0
2f(k)) 

2m 6~>0 4 w k^o 

(4.4) 
X 

The symbols used in (4.2) and (4.3) are defined in the an (^ 
following: 

N 

sin&# cos& ( a + e) 

&# n (4.10) 

V-

p= lim — , 

a -»» 

Z=N0/N, 

ko2 = &irapZ, 

Eex(k) =—(k*+k<?f(k))[ \-\y. 
(' 

sinka cos£(a+e) 
2 

ka ) 

1/2 

/(*) = 
sin^&e a + e /cosj&e sin|&e\ 

+ kl 
\ke 2 \ ike (ike)2) 

On the other hand, if the choice is 

ak= (2yk coskia+e))'1 

sinka cos& ( a + e) \ 1/2' 
X H 1 - 4 ^ 

&a )]• 

(4.H) 

(4.12) 

sin£(a+^€) a + a /cos£(a+fe) 

*(«+*«) 

then, 

2 \ k(a+h) 
sin&(a+Je)\ 

(4.5) 

fc2 (a+h) * 6 ) 2 / 

iyp = E 0 +l im S Eex(k)bk*bk 
e->0 k^O 

&2 / sin&a \ _ 
— l i m — J2 ko2[ cos&(a+e) )6k&-

c-*° 2m k^o \ &a / 
(4.13) 

&t(p,q)= 

where 

f s inP±a a + e P ± • (pdb q) 

P±a 2 P± 

/cosP±a sin.P±a\ 

\ P±a (P±a)2/ 

P ± = P + ( p ± q ) ( e / 2 a ) . 
11 N. N. Bogoliubov, J. Phys. (USSR) 11, 23 (1947). 

From either (4.9) or (4.13), the ground-state energy for 
Hp is given by (4.10). If we let il —> oc y the summation 
in k can be replaced by an integral and for large values 
of k the second term in (4.10) is asymptotically equal 
to the following integral: 

ilkffi2 r00 sin&acos£(a+€) 
-lim / dk - 0 . (4.14) 

*-*° 16w2m ka 
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FIG. 1. Excitation en­
ergy for various values 
of x0

2. 

In order to carry out the next higher order term in 
the ground-state energy, we treat Ht by perturbation 
theory. For this we have to have the relevant state 
vectors. From (4.6), (4.7), and (4,12), we can define 
the right and left ground-state vectors of HP by 

and 

I I I Ok>^ I I Kk exp(-akak*a_k*) | N) 
k>0 k>0 

I I ( O k | = HKk(N\ e x p ( - a k a k a _ k ) , 

(4.18) 

where \N) is the TV-free-particle ground-state vector, 
which is related to the null-particle state vector 10) by 

This integral is equal to zero because e is positive. If 
we subtract from (4.10) term (4.14) with the limit 
taken inside the integral sign, we can interchange the 
integration and the limit e—>0 in (4.10). Then, 

N 2m 

fi2 

- 4 7 r a p [ l - ( l - ^ ] 

8W7T2p J o 
dk\m 

sin&a\ ~| 
k°--\ ( coska-\ 

2 \ ka 

h2/ 
- c !)] 

X •1+ 1 
&o4 s'm2ka 

2ka(k2+^ko2 (co$ka-\-smka/ ka))2, 

/e0
4 sin2ka] 

) l / 2 - | 

J 

2 2ka J 

For a~>0, the second term in (4.15) is reduced to 

— — / dk\&(k2+kQ
2) 

. (4.15) 

X •1+ 1 +—} . (4.16) 

This integral has been evaluated in LHY and, hence, 
we can just quote the result and obtain 

E0 l-wtPap] 128 
1 + (a3

P)1/2+0(a3p) • (4.17) 
N m L 15\/7r 

The depletion factor £ has been evaluated in LHY to be 

8 
f = l -

S\/w 
(aV)1/2+0[(<z3p)], (4.18) 

which is also valid with our generalized pseudopotential. 
To the order of accuracy of the present calculation it 
is absorbed into the term 0(a4p2) in (4.17). 

\N)^- m 1/2 
(<*o*)*|0>. (4.19) 

In order to have (0k | 0k) = 1, the product of the normal­
ization factors in (4.18) is given by 

KkKk=l —akak. (4.20) 

The state of Hp with one quasiparticle of momentum 
k excited is given by 

| l k H/<Y6 k * |0 k >, < l k | = £ k ' < 0 k | 6 k j (4.21) 

where the normalization ( l k | l k ) = 1 yields 

Kk
fKk' = (l-a^)-^(l~ak

2)~^(l-akak). (4.22) 

Now we are in a position to evaluate the non-vanishing 
matrix elements of Ht and write down straightforwardly 
the energy shift to EQ due to Ht in second-order pertur­
bation theory: 

fi2 

AEQ= - l i m — L ( £ « ( * ) + £ « ( * ' ) 
€~>0 2m k >k' >k" >0 

k+k'+k"=0 

+EUk'')-E0)-
1256w2a2p&~1(l-akak)-

1 

X(l-o:k /ak / )-1( l—akvav'^Zg+fkikOauav 

-g_ (k ,k , ) a k "+sym. ]X[^ - (k ,k / ) ak« k ' 

- g + ( k , k ' ) 5 k - + s y m . ] . (4.23) 

In the limit a—-> 0, this is reduced exactly to (4.18) in 
Wu's paper.4 We refer to his careful treatment of this 
summation and quote his results below 

16£2 

AE0 = —~-(|-7r-V3>ap/V[(a3p) ln(127ra3p) 
m 

+OW]. (4.24) 

In other words, we have also reproduced the logarithm 
term in the ground-state energy using our generalized 
pseudopotential. I t may also be mentioned that, unlike 
Wu's case, the upper momentum cutoff which he has 
to introduce in the calculation should come out auto­
matically because of our form of ak. 
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FIG. 2. Excitation energy for special choices of parameters 
pertinent to liquid helium II as mentioned in the text. We have 
used the conversion factor 

W 6.06 
-:K°. 

2ma2 a2 (in A2) 

The phenomenological curve by Landau and theoretical curve 
by Brueckner and Sawada are reproduced for comparison. The 
Landau curve is taken from Ref. 7. The analytical expression 
for the Brueckner-Sawada spectrum and their choice of parameters 
can be found in Ref. 12. 

5. Phonon-Roton Spectrum 

From either (4.9) or (4.13), the excitation energy of 
quasiparticles from diagonalizing Hp is given in (4.11). 
We now rewrite it in a more convenient form 

2ma2 

-Eex(x) = 
/ sinx\ 

#4+x0
2#2f cosxH—— J 

#o4 / sinx\2""i1/2 

H ( cosx I 
4 \ x / -

(5.1) 

where 
x^ka and Xo^koa. 

We plot Eex(#) in Fig. 1 for different values of x0 and 
it is seen that for certain values of XQ, Ee*(x) exhibits 
a phonon-roton behavior proposed phenomenologically 
by Landau7 to explain the superfluidity behavior of 

liquid He II. Similar spectrum has been obtained for 
hard-sphere Bose system by Brueckner and Sawada,12 

Abe,6 and Beliaev13 from different methods. 
The present calculation for the ground-state energy 

or excitation spectrum is only valid for very dilute gas, 
for which (a3p)«l. However, we would like to stretch 
the validity of our calculation and apply the results to 
liquid He II, for which the following parameters are 
adopted: 

p=(3.6A)~3, a=1.6 A. 

We stretch the validity of (5.1) in the following manner: 
We assume that the excitation spectrum valid for high 
values of azp would have the same analytic form as in 
(5.1) except that the constant x0

2 would be enhanced 
from its present value of Sirazp^; the value of x0

2 is then 
to be fixed by relating it to the observed sound velocity 
in liquid He II. According to (5.1), the sound velocity, 
V6, should be related to x<? by 

fi 
F s = (2x0

2)1/2. 
2ma 

(5.2) 

The experimental value of Vs for liquid He II is 237 
m/sec and this would give a value of 12 for x0

2. A plot 
of Eex versus k for the above-mentioned choice of 
parameters is given in Fig. 2, where Landau's original 
curve and the curve by Brueckner and Sawada are 
also reproduced for comparison. 

Our chosen value for a is smaller than the measured 
scattering length for liquid He II of about 2.5 A. This 
discrepancy may be accounted for by the difference of 
the actual soft-core potential among the helium atoms 
and the model hard-core potential used in the calcu­
lation. 

Note added in proof. After submitting this work, we 
received a private communication from Marshall 
Luban, stating that he has taken a similar approach 
independently and will present his results in the near 
future. 
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